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Abstract. We will prove certain general relations in the matrix product ansatz (MPA) for
one-dimensional stochastic systems, which are true in both random and sequential updates.
We will derive general MPA expressions for the currents and current correlators and find the
conditions in the MPA formalism, under which the correlators are site independent or completely
vanishing.

1. Introduction

One of the fruitful techniques for the study of stochastic systems on one-dimensional lattices
is the matrix product ansatz (MPA) [1, 2], which is a generalization of the simple product
measure, where the steady-state probabilities are represented by matrix elements or traces
of a product of appropriate operators. This ansatz, when applied to processes with random
sequential updates, states that the steady state of a process governed by a Hamiltonian of the
form

H = h1 +
N−1∑
i=1

hBk,k+1 + hN (1)

can be written as

|P 〉 = 1

ZN
〈W |A⊗A⊗ · · ·A|V 〉 (2)

whereZN is a normalization constant. HereA is a column matrix with operator entries acting
on some auxiliary spaceF , that is

A =
p∑
i=0

Ai |i〉 =


A0

A1

A2

...

Ap

 (3)
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and〈W | and|V 〉 are two vectors inF ∗ andF , respectively. Here we have assumed that the
Hilbert space of states of the chain isH = h⊗N , whereh is the(p + 1)-dimensional space of
one site. The spaceh is spanned by the vectors|i〉; i = 0, . . . , p where|0〉 denotes a vacant
site and|i〉 denotes a site occupied by a particle of typei. Note that we use the same symbol
| 〉 for a vector inh andF , hoping that no confusion will arise.

The conditions for stationarity of (2) are the following [2]:

hBA⊗A = X ⊗A−A⊗ X (4)

(hNA− X )|V 〉 = 0 (5)

〈W |(h1A +X ) = 0 (6)

whereX is a suitably chosen vector with in general operator entries, i.e.

X =
p∑
i=0

Xi |i〉 =


X0

X1

X2

...

Xp

. (7)

When applied to processes with backward sequential (BS) updates in discrete time with an
updating operator

T = T1T
B
12T

B
23 · · · T BN−1NTN (8)

whereT1 andTN are the boundary terms and the rest of the operators implement the bulk
dynamics, the steady state|P 〉 is written in the same form as in (2), but the MPA relations
(4)–(6) are replaced by [3, 4]

T BA⊗ Â = Â⊗A (9)

TNA|V 〉 = Â|V 〉 (10)

〈W |T1Â = 〈W |A (11)

whereÂ is a new operator-valued vector inh.

Â =
p∑
i=0

Âi |i〉 =


Â0

Â1

Â2

...

Âp

. (12)

The form of the relations for forward sequential (FS) update is obtained from (9)–(11) by
interchange ofA andÂ.

This ansatz has been applied to the asymmetric simple exclusion process (ASEP) under
various circumstances and with different kinds of updates (see [5–7] and references therein).
To explore the usefulness of MPA beyond the above simple cases, there have also been a
number of attempts to study the algebras associated with more complicated processes [8–12],
or conversely, the processes associated with more complicated algebras [13–17]. In pursuing
the latter line, that is beginning from algebras and searching for processes, one usually notices
that the kind of algebra severely restricts the kind and the rates of the processes, especially on
open systems.



Features of matrix product states in stochastic systems 711

The aim of this paper is to start from the general MPA algebras (4)–(6) and (9)–(11) and
derive some general relations, which are valid for a large class of processes. These relations
put some general constraints on the algebra that one wants to start with for the formulation of
a process in the MPA formalism. We first state our main results, the proof of which will be
found in the forthcoming sections.

Main results

We consider the family of processes on an open chain, described by Hamiltonians of the type
(1), where there are a number of species of particles interacting in the bulk. The processes
in the bulk are quite arbitrary, i.e. particles can be created, annihilated or can coagulate or
decoagulate. However, we assume that some species of particles are conserved, so that for
each conserved species say theith one, a conserved currentJ i can be defined. Particles are
injected into or extracted from both the left and the right ends and a driving force may also be
present.

Due to this arbitrariness we do not use the detailed form of any particular Hamiltonian or
the associated algebra, or any of its representations thereof, but only use the basic formulae of
MPA. Our main results are the following:

(a) If a species say theith one is conserved, then its current is given by

〈J i〉 = 〈W |XiC
N−1|V 〉

〈W |CN |V 〉
where in the ordered updatesXi = Ai − Âi .

(b) If
∑

i Xi = 0, then then-point correlators of all the conserved currents are independent of
the distances between the points. This is true even in finite open chains and is independent
of what the other species are doing.

(c) If a set of{Xi1, Xi2, . . .} arec-numbers, then the connected correlation functions for the
currents of particles{i1, i2, . . .} vanish in the thermodynamic limit. Moreover, in a finite
chain withN sites, one has for the above set of particles

〈J rJ s〉N = 〈J sJ r〉N = 〈J r〉N 〈J s〉N−1 (13)

〈J rJ sJ t 〉N = 〈J r〉N 〈J s〉N−1〈J t 〉N−2 (14)

etc.

Remarks.

1. The above properties when supplemented with the results from numerical
computations or simulations for small chains, may give us an idea of what kind
of algebra can or cannot be used for an exact solution of the problem in a large chain.

2. The above results are particular to open systems and do not apply to processes on
closed systems.

(d) Under any circumstances the currents and densities of the conserved species in backward
and forward sequential updates are related as follows:

〈ni〉→(k)− 〈ni〉←(k) = 〈J i→〉 = 〈J i←〉
where the direction of the arrows indicate the type of update. This result is a generalization
of a previous one first derived in [19].
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Remark. In deriving the above results we have not used any particular representation of the
MPA algebra, i.e. such as the Fock space representations of [19] or [2].

2. General relations in MPA algebras

In order to deal with all the different updates in a uniform manner we define the following
objects:

h1 := 1− T1 hN := 1− TN hB := 1− T B (15)

and define in the BS and FS updates the vector

X := A− Â. (16)

With these definitions, the MPA relations for these ordered updates take the following
form, compared with those for the random update (see equations (1)–(4)):

hBA⊗ (A− X ) = X ⊗A−A⊗ X (17)

(hNA− X )|V 〉 = 0 (18)

〈W |(h1Â +X ) = 0. (19)

Note the similarity between the equations for different updates. In fact, equations (5) and (18)
are exactly the same. This rewriting could be of no use were it not for the fact that usually (see,
for example, [18, 21]), the evolution operatorT B of a process in an ordered update is, modulo
a redefinition of parameters, nothing but 1 +hB , wherehB is the Hamiltonian of the same
process in a random sequential update. Therefore, this rewriting allows one to immediately
write down the MPA relations for any of these updates, once they are known for one of them.
Furthermore, in those situations where a map may exist between the MPA algebras for different
updates, such rewriting facilitates the search for such a map. We will see an example of this
later on. Before proceeding further we fix some notation and conventions. In the Hilbert space
h we define a reference state〈s| as

〈s| :=
i=p∑
i=0

〈i| ≡ (1, 1, . . . ,1). (20)

The reference state for the spaceh⊗ h is defined as〈ss| := 〈s| ⊗ 〈s| and similarly for tensor
products having more factors. This state is used to write the sum of entries in a column of
a vector or a matrix in closed form. The following operators acting on the spaceF are also
useful:

C :=
i=p∑
i=0

Ai = 〈s|A〉 K :=
i=p∑
i=0

Xi = 〈s|X 〉. (21)

The normalization constantZN is given byZN = 〈W |CN |V 〉. Conservation of probabilities
imply that in all three updates we should have

〈ss|hB = 〈s|h1 = 〈s|hN = 0. (22)

Actually, in ordered sequential updates, conservation of probability need not hold in every
single update, but only in one complete update. Therefore, one should only have〈S|T = 〈S|.
In writing (22) we are assuming conservation of probability at each single update, i.e.
〈ss|T B = 〈ss|. The known sequential updating procedures for the ASEP fall within this
class.
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Multiplying both sides of the MPA relations (4) and (5) or (17) and (18) (from the left by
〈ss| or 〈s| where appropriate and using (21) and (22) we obtain the following relations which
are valid in all kinds of updates

K|V 〉 = 〈W |K = 0 [K,C] = 0. (23)

This relation was first obtained in [19].
We now consider a processes in which some of the particle species are conserved locally.

In this case the local operatorhBk,k+1 does not change the number of particles in a conserved
species say theith one, on the pair of sitesk andk + 1. Thus we have

[τ̂ ik + τ̂ ik+1, h
B
k,k+1] = 0 (24)

whereτ̂ i is the number operator of particles of typei, i.e. τ̂ i |j〉 = δij |j〉. Applying the state
〈ss|τ ik + τ ik+1 on both sides of (4) or (17) and using (21) and (22) we obtain

[Xi, C] = [Ai,K] ∀i. (25)

This relation holds for each conserved species separately and is a new constraint on the MPA
algebra for such processes.

Remark. In a process consisting only of exchange of particles, more detailed relations can be
obtained. However, equation (25) is valid independent of the interaction of the other species.

3. The MPA expression for the currents

The average density of particles of typei at sitek is defined as〈τ ik〉(t) := 〈S|τ̂ ik |P(t)〉 where
〈S| is the reference state of the whole lattice. We will now obtain general MPA expressions
for currents of conserved species of particles.

At least in the RS update, the MPA expressions for the current of a conserved species can
be derived simply by calculating the current at one of the boundary links, say the rightmost
link. This current is the product of the density at the rightmost site and the extraction rate
of that species. However, we prefer to follow a different approach and calculate the currents
directly in the bulk, in order to also calculate the current correlators (see section 3.3).

3.1. The RS update

According to the Hamiltonian formulation of Markov processes, we have

d

dt
〈τ ik〉 = 〈S|[H, τ̂ ik ]|P(t)〉. (26)

Due to the form ofH this can be rewritten as

d

dt
〈τ ik〉 = 〈S|[hBk−1,k + hBk,k+1, τ̂

i
k ]|P(t)〉. (27)

Combination of (24) and (27) now yields

d

dt
〈τ ik〉 = 〈S|[hBk−1,k, τ̂

i
k ]|P(t)〉 − 〈S|[hBk,k+1, τ̂

i
k+1]|P(t)〉 (28)

which can be written as a continuity equation:

d

dt
〈τ ik〉 = 〈J ik 〉 − 〈J ik+1〉 (29)
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with the current of particles of typei into sitek being

〈J ik 〉 = 〈S|[hBk−1,k, τ̂
i
k ]|P(t)〉. (30)

To find the MPA relation for the steady-state currents we rewrite (30) as

〈J ik 〉 = 〈W |Ĵ ik |V 〉 (31)

whereĴ ik is the following operator acting onF :

Ĵ ik =
1

ZN
〈S|[hBk−1,k, τ̂

i
k ]|A⊗A⊗ · · · ⊗A〉. (32)

Note that here we are looking at|A⊗A⊗ · · · ⊗A〉 as an operator-valued vector inH. Using
(21), we find

Ĵ ik =
1

ZN
Ck−2〈ss|[hB, 1⊗ τ i ]|A⊗A〉CN−k =:

1

ZN
Ck−2MiC

N−k. (33)

The operatorMi is calculated as follows:

Mi = 〈ss|hB(1⊗ τ̂ i )− (1⊗ τ̂ i )hB |A⊗A〉
= −〈ss|1⊗ τ̂ i |X ⊗A−A⊗ X 〉
= −KAi +CXi (34)

where in the second line we have used (4) and (22) and in the third we have used (3), (7) and
(21). Thus using (23), we find

〈J i〉 = 〈W |C
k−2XiC

N−k|V 〉
〈W |CN |V 〉 . (35)

We can now use (25) and rewriteCXi = XiC +KAi −AiK and move the twoK ’s to the left
and right where their action on the vectors〈W | and|W 〉 vanish. In this way we can moveXi
completely to the left and obtain

〈J i〉 = 〈W |XiC
N−1|V 〉

〈W |CN |V 〉 . (36)

This kind of relation for conserved currents has already been obtained for specific 2-species
algebras [14] where all the particles are conserved. Here we derive it in a quite general form.

3.2. The BS and FS updates

In the BS update we have

〈τ ik〉(t + 1)− 〈τ ik〉(t) = 〈S|τ̂ ikT |P(t)〉 − 〈S|τ̂ ik |P(t)〉. (37)

Using the property〈S|T = 〈S|, we can write (37) in the form

〈τ ik〉(t + 1)− 〈τ ik〉(t) = 〈S|[τ ik , T ]|P(t)〉. (38)

Taking the structure ofT into account (see (8)), using the notationT Bk,l := T Bk,k+1 . . . T
B
l,l+1 (with

T BN,N+1 := TN ) and the property〈S|T Bk,l = 〈S|, we can rewrite equation (38) as

〈τ ik〉(t + 1)− 〈τ ik〉(t) = 〈S|[τ̂ ik , T Bk−1,kT
B
k,k+1]T Bk+1,N |P(t)〉

= 〈S|[τ̂ ik , T Bk−1,k]T Bk,N |P(t)〉 + 〈S|[τ̂ ik , T Bk,k+1]T Bk+1,N |P(t)〉 (39)
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where in the last term we have used〈ss|T Bk−1,k = 〈ss|. Using the local conservation law

[τ̂ ik + τ̂ ik+1, T
B
k,k+1] = 0. (40)

Equation (39) can be written in the form of a continuity equation

〈τ ik〉(t + 1)− 〈τ ik〉(t) = 〈J ik 〉(t)− 〈J ik+1〉(t) (41)

whereJ ik is the number ofi-particles which, in the interval betweent andt + 1, leave sitek−1
and enter into sitek, and is given by

〈J ik 〉 = 〈S|[τ̂ ik , T Bk−1,k]T Bk,N |P(t)〉. (42)

The MPA relation for the current〈J ik 〉 is now obtained along the same lines as in the RS update,
namely

〈J ik 〉 = 〈W |Ĵ ik |V 〉 (43)

where

Ĵ ik = 〈S|[τ̂ ik , T Bk−1,k]T Bk,N |A⊗A⊗ · · · ⊗A〉. (44)

Using (9) and (21) we obtain

Ĵ ik = 〈S|[τ̂ ik , T Bk−1,k]|A⊗A⊗ · · ·A⊗ Â︸ ︷︷ ︸
k−1,k

· · ·A〉

= Ck−2〈ss|[1⊗ τ̂ i , T B ]|A⊗ Â〉CN−k

=: Ck−2MiC
N−k. (45)

The operatorMi is calculated by expanding the commutator and using (9) and〈ss|T B = 〈ss|,
with the result

Mi = 〈ss|1⊗ τ̂ i |Â⊗A〉 − 〈ss|1⊗ τ̂ i |A⊗ Â〉
= ĈAi − CÂi. (46)

Using the fact that̂C = C−K, Âi = Ai −Xi,we rewriteMi asCXi −KAi . Using the same
argument as we did in the RS case we find

〈J i←〉 = 〈W |XiC
N−1|V 〉

〈W |CN |V 〉 . (47)

A similar manipulation shows that in the FS update the current is given by the same general
form as in (47), withC replaced withĈ. Writing Ĉ = C +K, expanding(C +K)(N−1) and
usingK|V 〉 = 0, we find that the currents of each conserved species in these two updates are
equal for arbitrary transition probabilities, i.e.

〈J i→〉 = 〈J i←〉 = 〈W |XiC
N−1|V 〉

〈W |CN |V 〉 . (48)

We have proved this relation under a more general condition as in [19], that is we do not
assumeC = Ĉ or equivalentlyK = 0. As we have pointed out in the introduction and will
prove in the next subsection the conditionK = 0 puts physical restrictions on the steady state,
namely in this case all the current correlators become distance independent. Moreover, we
find the following relation between density profiles and currents in the two updates, which is
valid regardless of the bulk and boundary transition rates:

〈ni〉→(k)− 〈ni〉←(k) = 〈J i→〉 = 〈J i←〉 (49)
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the proof of which is easy to see, once we note that

〈ni〉→(k) = 1

ẐN
〈W |Ĉk−1ÂiĈ

N−k|V 〉

= 1

ZN
〈W |Ck−1(Ai −Xi)CN−k|V 〉

= 〈ni〉←(k)− J i→. (50)

This is the generalization of a similar relation for 1-ASEP [19], which is now valid for each
species separately and for arbitrary transition probabilities.

3.3. Equal time current correlators

In this section we consider only the RS update and find the MPA expressions for the current
correlators〈J ikJ jl 〉 of two kinds of particlesi andj at sitesk andl. For l > k + 1 (i.e. disjoint
links) we obtain a simple relation. Starting from the definition

〈J ikJ jl 〉 := 〈S|[hBk−1,k, τ̂
i
k ][h

B
l−1,l , τ̂

i
l ]|P(t)〉 (51)

and proceeding exactly along the lines which led to (35) we find

〈J ikJ jl 〉N =
〈W |Ck−1XiC

l−k−2XjC
N−l+1|V 〉

〈W |CN |V 〉 . (52)

The proof of this relation is detailed in the appendix. Forl = k + 1 (i.e. consecutive links) no
simple relation is obtained. Several remarks are in order now.

Remarks.

(a) In the special caseK = 0, the two-point correlator (and, in fact, all then-point current
correlators (see the appendix)), become site independent, since in this case the operators
Xi commute withC and the two-point correlator can be written as

〈J ikJ jl 〉N =
〈W |XiXjCN−2|V 〉
〈W |CN |V 〉 . (53)

(b) For number-valuedXi andXj this relation implies

〈J ikJ jl 〉N = 〈J jk J il 〉N = 〈J i〉N 〈J j 〉N−1 (54)

with similar relations for higher correlators. This is, of course, a finite-size effect and in
the thermodynamic limit, the currents at disjoint links are not correlated. However, this is
true only when some of theXi ’s are number-valued. In this way we have shown that the
nature ofX , controls the current correlators in a very definite way, namely for generalX ,
but withK :=∑Xi = 0, the correlators are site independent and for number-valuedX ,
there is no correlation in the thermodynamic limit.

(c) No such simple relations can be obtained for the FS and BS updates even for disjoint
links. This is due to the fact that in these updates, no matter how far the links are, the
current operators for these links contain a common string of local operators (see (42)).
Thus although the currents of the two ordered updates are equal, their correlators may not
be related to each other in any simple way. In this sense the steady state of the two updates
may not be physically equivalent.
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4. Beyond nearest-neighbour interactions

The matrix product ansatz as formulated in [2], can be generalized to models with more
general Hamiltonians†. In the following we consider a Hamiltonian with nearest- and next-
nearest-neighbour interactions, although our analysis can be generalized to more non-local
Hamiltonians. Consider a Hamiltonian of the form

H = h12 +
N−2∑
k=1

hBk,k+2 + hN−1,N (55)

wherehBk,k+2 acts on the three sitesk, k + 1 andk + 2 andh12 andhN−1,N are boundary terms.
Writing the steady state as in (2) one finds the following conditions for stationarity:

hBA⊗A⊗A = X ⊗A−A⊗ X (56)

(hN−1,NA⊗A− X )|V 〉 = 0 (57)

〈W |(h12A⊗A +X ) = 0 (58)

whereX is, in general, an operator-valued tensor inh⊗ h, i.e.

X :=
∑
α,β

Xα,β |α, β〉 (59)

and|α〉 and|β〉 denote the states of one site. Denoting as beforeC := 〈s|A〉 andK := 〈ss|X 〉
one finds again that equation (23) is also true in this case. To find the MPA expressions for the
currents we proceed as in section 4 and find:

d

dt
〈τ ik〉 = 〈S|[hBk−2,k + hBk−1,k+1 + hBk,k+2, τ̂

i
k ]|P(t)〉. (60)

Local conservation of particles, now implies

[hBk−1,k+1, τ̂
i
k ] = −[hBk−1,k+1, τ̂

i
k−1 + τ̂ ik+1]. (61)

Acting on (56) by〈sss|τ̂ ik ⊗ 1⊗ 1 + 1⊗ τ̂ ik ⊗ 1 + 1⊗ 1⊗ τ̂ ik and using (21) and (22) we find
that

[X(1)i +X(2)i , C] = 0 (62)

where

X
(1)
i :=

∑
j

Xij X
(2)
i :=

∑
j

Xji . (63)

Inserting (61) in (60), we find again a continuity equation as in (29) with the currents

〈J ik 〉 = 〈S|[hBk−2,k, τ̂
i
k ] − [hBk−1,k+1, τ̂

i
k−1]|P(t)〉. (64)

The MPA expression for this current is obtained along the same lines as in section 4. After
similar manipulations we find

Ĵ ik =
1

ZN
Ck−3〈sss|[hB, 1⊗ 1⊗ τ̂ i ]|A⊗A⊗A〉CN−k

− 1

ZN
Ck−2〈sss|[hB, τ̂ i ⊗ 1⊗ 1]|A⊗A⊗A〉CN−k+1. (65)

† The possibility of extending MPA to include more non-local interactions has also been recently noted in [20].
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Expanding the commutators and using (21), (22) and (56) we find

Ĵ ik = Ck−2〈ss|(1⊗ τ i + τ i ⊗ 1)|X 〉CN−k (66)

which finally yields

〈J i〉 = 〈W |X
(i)CN−1|V 〉

〈W |CN |V 〉 (67)

where

X(i) :=
∑
ν

(Xi,ν +Xν,i). (68)

The generalization of these results to Hamiltonians with more non-local interactions is obvious.

5. Discussion

We have discussed the general structure of MPA states in stochastic systems and have proved
certain general relations for general stochastic processes in random and ordered updates. We
have tried to be as general as possible, our results in sections 3–5 are independent of the bulk
and boundary transition rates and are also independent of the asymmetry caused by driving. We
have found general MPA expressions for the currents and current correlators and have shown
that when in the MPA formalism one uses general operator-valuedX but with

∑
i Xi = 0, the

current correlators while non-vanishing, become site independent.
And when any of theXi ’s arec-numbers, then the connected correlation functions of the

corresponding currents vanish in the thermodynamic limit.
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Appendix

In this appendix we present the proof of (65). In the same spirit that we have derived the
expressions for the currents we write

〈J ikJ jl 〉 = 〈W |Ĵ ik Ĵ jl |V 〉 (A1)

where

Ĵ ik Ĵ
j

l =
1

ZN
〈S|[hBk−1,k, τ̂

i
k ][h

B
l−1,l , τ̂

i
l ]|A⊗A · · · ⊗A〉

= 1

ZN
Ck−2MiC

l−k−2MjC
N−l

= 1

ZN
Ck−2(CXi −KAi)Cl−k−2(XjC − AjK)CN−l (A2)

where in the last line we have used two equivalent expressions forM, in order to move the two
K ’s to the left and right, respectively, and act by them on〈W | and|V 〉 to obtain

〈J ikJ jl 〉 =
〈W |Ck−1XiC

l−k−2XjC
N−l+1|V 〉

〈W |CN |V 〉 . (A3)

This result is true for the two-point correlators, since in higher correlators one cannot eliminate
all theK ’s in (A2). WhenK = 0, this further simplifies to (53). Furthermore, in this case
formula (53) trivially generalizes ton-point functions.
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